Go to content

References

Benway, H.M., Lorenzoni, L., White A.E., Fiedler, B., Levine, N.M., Nicholson, D.P. et al. (2019). Ocean time series observations of changing marine ecosystems: An era of integration, synthesis, and societal applications. Frontiers in Marine Science 6. https://doi.org/10.3389/fmars.2019.00393
Bianchi, C.N, Azzola, A., Cocito, S., Morri, C., Oprandi, A., Peirano, A. et al.  (2022). Biodiversity monitoring in Mediterranean marine protected areas: scientific and methodological challenges. Diversity 14:43. https://doi.org/10.3390/d14010043
Blancher, P., Lefrancois, E., Rimet, F., Vasselon, V., Argillier, C., Arle, J. et al. (2022). A strategy for successful integration of DNA-based methods in aquatic monitoring. Metabarcoding and Metagenomics 6: 215-226. https://doi.org/10.3897/mbmg.6.85652
Chavez, F.P., Min, M., Pitz, K., Truelove, N., Baker, J., LaScala-Grunewald, D. et al. (2021). Observing life in the sea using environmental DNA. Oceanography 34(2):102-119. https://doi.org/10.5670/oceanog.2021.218
Closek, C.J., Santora, J.A., Starks, H.A., Schroeder, I.D., Andruszkiewicz, E.A., Sakuma, K.M. et al. (2019). Marine vertebrate biodiversity and distribution within the central California Current using environmental DNA (eDNA) metabarcoding and ecosystem surveys. Frontiers in Marine Science 6. https://doi.org/10.3389/fmars.2019.00732
Norros, V., Laamanen, T., Meissner, K., Iso-Touru, T., Kahilainen, A., Lehtinen, S. et al. (2022). Roadmap for implementing environmental DNA (eDNA) and other molecular monitoring methods in Finland. Vision and action plan for 2022-2025. Reports of the Finnish Environment Institute 20/2022. URI: http://urn.fi/URN:ISBN:978-952-11-5482-9.
Bruce, K., Blackman, R., Bourlat, S.J., Hellström, A.M., Bakker, J. et al (2021). A practical guide to DNA-based methods for biodiversity assessment. Sofia, Bulgaria: Pensoft Advanced Books. DOI: https://doi.org/10.3897/ab.e68634
Fediajevaite, J., Priestley, V., Arnold, R. & Savolainen, V. (2021). Meta-analysis shows that environmental DNA outperforms traditional survey, but warrents better reporting standards. Ecology and Evolution 11: 4803-4815. https://doi.org/10.1002/ece3.7382
Hellström, M., Andersson-Li, M., Brys, R., Halfmarten, D., Hänfling, B., Näslund, J. et al. (2021a). Riktlinjer för hantering av akvatiskt eDNA som verktyg inom svensk miljöanalys – Del I: Insamling i fält, filtrering och konservering. AquaBiota Report 2021:09
Hellström, M., Andersson-Li, M., Brys, R., Halfmarten, D., Hänfling, B., Näslund, J. et al. (2021b). Riktlinjer för hantering av akvatiskt eDNA som verktyg inom svensk miljöanalys – Del II: Laboratoriekrav och eDNA-extraktioner. AquaBiota Report 2021:10
Hinz, S., Coston-Guarini J., Marnane, M., Guarini, J-M. (2022). Evaluating eDNA for use within marine environmental impact assessments. Journal of Marine Science and Engineering 10(3):375. https://doi.org/10.3390.jmse10030375
Jerney, J., Hällfors, H., Oja, J., Reunamo, A., Suikkanen, S. & Lehtinen, S. (2022). Guidelines for using environmental DNA in Finnish marine phytoplankton monitoring. Improved biodiversity assessment through method complementation. Reports of the Finnish Environment Institute 40/2022.
Keck, F., Blackman, R.C.D., Bossart, R., Brantschen, J., Couton, M., Hürlemann, S. et al. (2022). Meta-analysis shows both concruence and complementarity of DNA and eDNA metabarcoding to traditional methods for biological assessment. Molecular Ecology 31: 1820-1835. https://doi.org/10.1111/mec.16364
UNIG (U.S.–Norway Intergovernmental Group on eDNA Implementation
for Fisheries Stock Assessments and Management). (2020). Implementation
of Environmental DNA (eDNA) as a Tool for Ecosystem-Based Fisheries
Management. U.S. Department of Commerce, NOAA White Paper NMFS-
NWFSC-WP-2020-01. https://doi.org/10.25923/e736-vn83
Pampoulie, C., Singh, W., Guðnason, K., Bárðarson, B., Ólafsdóttir, G., Þórarinsson, Þ. et al. (2023). Detection and distribution of the North Atlantic capelin (Mallotus villosus) using environmental DNA – comparison with data from the main fishery management survey. Environmental DNA.  https://doi.org/10.1002/edn3.415
Pascher, K., Švara, V. & Jungmeier, M. (2022). Environmental DNA-based methods in biodiversity monitoring and protected areas: application range, limitations, and needs. Diversity 14: 463. https://doi.org/10.3390/d14060463
Pawlowski, J., Bonin, A., Boyer, F., Cordier, T. & Taberlet, P. (2021). Environmental DNA for biomonitoring. Molecular Ecology 30: 2931-2936. https://doi.org/10.1111/mec.16023
Ramirez-Amaro, S., Bassitta, M., Picornelli A., Ramon, C., Terrasa B. (2022). Environmental DNA: State-of-the-art of its application for fisheries assessment in marine environments. Frontiers in Marine Science 9. https://doi.org/10.3389/fmars.2022.1004671
Ratcliffe, F.C., Webster, T.M.U., de Leaniz, C.G. & Consuegra, S. (2021). A drop in the ocean: Monitoring fish communities in spawning areas using environmental DNA. Environmental DNA 3: 43-54. https://doi.org/10.1002/edn3.87
Rogers, A.D., Appeltans, W., Assis, J., Ballance, L.T., Cury, P., Duarte, C. et al. (2022). Chapter Two - Discovering marine biodiversity in the 21st century. Charles Sheppard (Ed.). Advances in Marine Biology, Academic Press, Volume 93, Pages 23-115. ISSN 0065-2881, ISBN 9780323985895, https://doi.org/10.1016/bs.amb.2022.09.002.
Rourke, M.L., Fowler, A.M., Hughes, J.M., Broadhurst, M.K., DiBattista, J.D., Fielder, S. et al. (2022). Environmental DNA (eDNA) as a tool for assessing fish biomass: A review of approaches and future considerations for resource surveys. Environmental DNA 4(1):9-33. https://doi.org/10.1002/edn3.185
Ruppert, K.M., Kline, R.J. & Rahman, Md.S. (2019). Past, present, and future perspectives of environmental DNA (eDNA) metabarcoding: Asystematic review in methods, monitoring, and applications of global eDNA. Global Ecology and Conservation 17, e00547. https://doi.org/j.gecco.2019.e00547
Salter, I., Joensen, M., Kristiansen, R., Steingrund, P. & Vestergaard, P. (2019). Environmental DNA concentrations are correlated with regional biomass of Atlantic cod in oceanic waters. Communications Biology 2:461. https://doi.org/10.1038/s42003-019-0696-8
Suarez-Bregua P., Álvarez-González, M., Parsons, K.M., Rotllant, J., Pierce, G.J.  Saavedra C. (2022). Environmental DNA (eDNA) for monitoring marine mammals: Challenges and opportunities. Frontiers in Marine Science 9. https://doi.org/10.3389/fmars.2022.987774
Turon, M., Nygaard, M., Guri, G., Wangensteen, O.S., Præbel, K. (2021). Fine-scale differences in eukaryotic communities inside and outside salmon aquaculture cages revealed by eDNA metabarcoding. Frontiers in Genetics 13. https://doi.org/10.3389/fgene.2022.957251